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Abstract

In the context of classical (crisp, precise) sets, there is a familiar connection
between the notions of counting, ordering and cardinality. When it comes to
vague collections, the connection has not been kept in central focus: there
have been numerous proposals regarding the cardinality of vague collections,
but these proposals have tended to be discussed in isolation from issues of
counting and ordering. My main concern in this paper is to draw focus back
onto the connection between these notions. I propose a natural generalisation
to the vague case of the familiar process of counting precise collections. I then
discuss the relationships between this process of counting and various notions
of ordering and cardinality for vague sets. Some existing views concerning the
cardinality of vague collections fit better than others with my proposal about
how to count the members of such a collection. In particular, the idea that
we should approach cardinality via certain formulas of a logical language—
which has been prominent in the recent literature—is less attractive than
other existing proposals.
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1 Introduction

There is a familiar connection between counting, ordering and cardinality.
When we have counted the elements of a collection—let’s say, for the sake of
example, a collection of brides, brothers, dwarves, or wonders of the world—
one, two, three, four, five, six, seven—we have achieved two things. First, we
have ordered the collection: we have put its elements into an ordering from
first through to seventh (viz., the order in which we counted them). Second,
we have determined how many things there are in the collection—that is, the
cardinality of the collection: this is given (when we count in the standard
way, as in the example above) by the last number we state (in this case,
seven).

In sum, when we have a (finite) set or collection of objects, there is a
process we can perform on the (elements of the) set: counting. When we
have performed this process, we get two things: an ordering of the elements
of the set, and an answer to the question how many things are in the set.

This connection between counting, ordering and cardinality is standard
fare1 in the case of classical or ‘crisp’ collections of objects—collections where
there is never any vagueness or indeterminacy regarding whether a given
object is in a given collection. When it comes to vague collections, however,
the connection has not been kept in central focus in the literature. There
have been numerous proposals for answering the question as to how many
objects there are in a vague collection—that is, what is its cardinality—
but these proposals concerning cardinality have tended to be discussed in
isolation from the issues of counting and ordering.

In this paper, rather than focussing directly on the cardinality question
for vaguely defined collections, I want to begin with the question of how to
count vague collections. The aim will be to find a natural generalisation to
the vague case of the familiar process of counting precise collections, which
then—as in the classical case—yields both a notion of ordering and a notion
of cardinality for vague collections. I shall not be proposing any new notions
of cardinality for vague collections. What we shall see, however, is that only
some of the existing notions mesh nicely with the conception of counting to be
introduced here. I take it that potential for coherence with an overall package
of concepts analogous to the familiar classical package—counting, ordering
and cardinality—is a mark in favour of a given notion of cardinality.

The paper proceeds as follows. §2 reviews the standard set-theoretic
reconstruction of the classical story—outlined above in an informal way—of

1For example, it is reviewed on the first page of a recent handbook article on set theory
[Bagaria, 2008, 616].
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counting, ordering and cardinality. §3 introduces vaguely defined collections.
In §4, I tell an informal story about counting vague collections, which is
intended to generalise the classical story; in §5 I reconstruct this story in
set-theoretic terms. In §6 I examine how this picture of counting fits with
possible notions of ordering vague collections. In §7 I turn to cardinality: the
various subsections of §7 look at existing proposals concerning the cardinality
of vague collections and explore whether these proposals fit nicely with the
story about counting presented in §§4–5.2

2 Ordinals and Cardinals

Note that in the standard story of the connection between counting, ordering
and cardinality, the numbers we recite when we count—one, two, three. . . —
play two different roles: they can function as ordinals, which specify the
position in an ordering of the objects to which they are assigned (first, second,
third,. . . ); and they can function as cardinals, which specify how many things
there are in a collection (one, two, three,. . . ).

The familiar story is standardly made more precise in the following way.
Consider the following sequence of sets, where the first set is the empty set ∅
and each subsequent set is the set containing all the earlier members of the
sequence:

∅

{∅}

{∅, {∅}}

{∅, {∅}, {∅, {∅}}}

{∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
...

(A piece of terminology that we shall use later: ω is the infinite set containing
all, and only, the sets in the sequence just given.) Following von Neumann,
the natural numbers 0, 1, 2, . . . can be identified with the objects (sets) in
this sequence: 0 is ∅, 1 is {∅}, and so on:

2A word of explanation concerning my title: it is a reference to the Count, a character
from the television show Sesame Street. He loved to count things—and when he had
finished doing so, would laugh maniacally (Aahh Aahh Aahh Aahh Aaaahhhh!) to the
accompaniment of thunder and lightning.
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0 : ∅

1 : {∅}

2 : {∅, {∅}}

3 : {∅, {∅}, {∅, {∅}}}

4 : {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}
...

Note that we can then also write:

0 : ∅

1 : {0}

2 : {0, 1}

3 : {0, 1, 2}

4 : {0, 1, 2, 3}
...

It can now be seen clearly that the familiar ordering relation < on the natural
numbers simply becomes the membership relation ∈.

We now have the objects that we use for counting (i.e. that we recite,
in order, when we count): the natural numbers. Counting itself proceeds
as follows. Informally, when we count a collection, we consider (point to,
touch) its members in turn, without missing any and without repeating any.
Each time we consider an object, we say a natural number, beginning with
1 and then proceeding in order: 2, 3, etc. The formal analogue of counting
is a bijection between the set being counted and one of the natural numbers
defined above.3 For example, suppose we are counting dwarves: one, two,
three, four, five, six, seven. The analogue of this is a bijection between the
set of dwarves and the number 7, that is, the set {0, 1, 2, 3, 4, 5, 6}. The fact
that we count every dwarf (missing none) corresponds to the function from
the set of dwarves to 7 being total (or if we are thinking of the function as
being from 7 to the set of dwarves, it corresponds to the fact that it is onto);

3A function f : S → T is said to be total if it satisfies the condition that every member
of S gets sent to some member of T ; onto (aka surjective, a surjection) if it satisfies the
condition that every member of T gets hit at least once; and one-one (aka one-to-one,
into, injective, an injection) if no member of T gets hit more than once. A bijection (aka
correspondence) is a function that is total, onto and one-one. If there is a bijection f from
S to T , then there is a bijection (the inverse of f) from T to S; hence it is common to
talk non-specifically of a bijection between S and T .
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the fact that we do not count any dwarf more than once corresponds to its
being a function (or if we are thinking of the function as being from 7 to the
set of dwarves, it corresponds to the fact that it is one-one).

Informally, counting yields an ordering of the set being counted, and a
cardinality for that set. In the formal reconstruction, this comes out as
follows. If there is a bijection between the set of dwarves and the number 7,
then that number just is the cardinal number of that set. As for ordering,
the natural numbers come in a standard, familiar order: 0, 1, 2, . . .. As we
have remarked, their formal analogues also come in a corresponding order,
given by the set membership relation. Now suppose we consider each number
not simply as a set—as we do when we think of it as a cardinal number—
but as an ordered set: a set together with the ordering relation given by ∈.
Then, given a bijection between a number and a set, we get a corresponding
ordering of that set. When we think of our numbers in this way—as ordered
sets—they become ordinals.

Note the difference between a particular ordering of a set, and its corre-
sponding ordinal. There are many different ways of counting the dwarves—
first Bashful, then Doc, then Dopey, Grumpy, Happy, Sleepy and finally
Sneezy; or Grumpy first, then Sleepy, Sneezy, Doc, Dopey, Happy and then
Bashful last; etc. Each of these is represented by a different bijection between
the set of dwarves and the number 7. But when we abstract away from the
particular identities of the objects in the ordering, and just look at the type
of ordering we get, we see that we get the same type of ordering each time:
one object, then another, then another, then another, then another, then
another and finally another—seven things in a row. An ordinal represents
an order type. So the multiple different orderings of the set of dwarves all
correspond to the same ordinal, 7.4

Note also that in the informal story, 0 plays no role—whereas in the set-
theoretic reconstruction, it does. In the informal story, we count 1, 2, 3, . . .—
starting at 1—and the cardinal number of the set we are counting is the last
number stated. In the set-theoretic reconstruction, n is the set {0, 1, 2, . . . , n−
1}, which has n elements: but not the numbers 1 . . . n, rather the numbers
0 . . . n − 1. The counting process is represented as a bijection between the
set being counted and a number n. The bijection associates the first element
in the set (i.e. first in the ordering generated by the counting process) with
0 (not with 1) and the last with n − 1 (not with n). The cardinal number

4An ordinal, as Cantor [1915] put it, results from a single act of abstraction: we ignore
the particular identity of each object in the set and simply look at the order in which
these objects appear; a cardinal results from a double act of abstraction, in which we
ignore both the particular identity of each object in the set and the order in which these
objects appear, paying attention only to the number of objects in the set.
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of the set is then the set of all the numbers associated with objects in the
set—which is the number after the last one associated with an object in the
set, rather than the last one itself. One might therefore think that if we
wish to speak strictly correctly, we need to say—for example—that the set-
theoretic story reconstructs, not the standard counting procedure itself, but
an equally good alternative procedure that starts from 0 (instead of 1) and
assigns as cardinal the first number not stated (rather than the last number
stated). We shall not enter into these sorts of issues here, as they would be a
distraction in the present context. For our purposes it will be best to speak
simply of the set-theoretic story as a reconstruction of the familiar counting
process (which starts from 1)—leaving it to readers who regard any of our
formulations as strictly speaking incorrect to re-word them mentally to their
own satisfaction.

Summing up: In the formal version of the familiar story, we have a se-
quence of sets. They play the role of numbers. If we think of them simply as
sets, they are cardinal numbers; if we think of them furthermore as ordered
(by set membership) they become ordinal numbers. Counting a set and get-
ting the answer n corresponds to the existence of a bijection between that set
and the number n. Such a bijection yields two things: an ordering of the set
(transferred from the ordering of n, when we consider it as an ordinal) and
an answer to the question how many things are in that set (n itself, when we
think of it as a cardinal).

The classical story just told extends from crisp finite collections to crisp
infinite collections in a standard way (as explained in any introductory work
on set theory). In this paper we wish to generalise in a different direction: we
shall consider only finite sets—but sets whose membership is not precisely
defined.

3 Vaguely Defined Collections

Given a predicate P , we can (try to) count the set of P ’s. How to proceed,
when P is vague? For example, suppose that there are twenty men in the
room: ten professional basketball players, six professional jockeys, and four
more or less borderline cases of tallness. How to count the tall men in the
room? Obviously we count each of the basketball players, and none of the
jockeys—but what about the borderline tall men? It is unclear whether we
should count them or not.

A similar problem arises if we suppose that the identity relation can be
vague.5 For example, suppose that Jane, who is 5′8′′, and Emma, who is

5See for example Parsons [2000, §8.1].
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6′1′′, work at moon base 9. One morning, Emma teletransports to base 7
for the day, returning that evening to base 9. Suppose we wish to count the
persons of 6′ or more in height who were present in base 9 that day. ‘6′ or
more in height’ is a precise predicate—and yet we face a similar problem to
the one we face when we wish to count the tall men: it is unclear whether the
Emma who steps out of the teletransporter in the evening is a distinct person
from the Emma who stepped into the teletransporter in the morning; hence,
having counted Emma in the morning, it is unclear whether (in addition) to
count Emma in the evening.6

Of course, if there can be cases of the two sorts just described, then
there can also be hybrid cases, involving both vague identity and vague
predicates—for example, counting the tall persons in base 9 on a given day.

I have argued elsewhere that ultimately sense cannot be made of the idea
of vague identity [Smith, 2008a]. I shall therefore focus entirely on cases
of counting collections whose vagueness arises from the vagueness of some
predicate used to define the set: for example, the tall men, the bald men,
the heavy suitcases, the long walks, and so on. I have also argued elsewhere
that vague predicates should be analysed in terms of degrees of truth—in
particular, using fuzzy sets [Smith, 2008b]. I shall therefore carry out my
discussion of vaguely defined collections in terms of fuzzy sets. Neverthe-
less, much of what I say could be applied, mutatis mutandis, both to other
approaches to vagueness, and to counting issues arising from vague identity.
Therefore, I shall often talk generally of ‘vague sets’, ‘vague collections’ and
so on, rather than specifically of ‘fuzzy sets’—even though at all points at
which rigour is required, the precise technical development will be in terms of
fuzzy sets. This paper is intended as a general contribution to the literature
on counting and cardinality in the presence of vagueness, illustrated in terms
of one particular source of vagueness (vague predication, not vague identity)
modelled in one particular way (using fuzzy sets). Some readers may take
vague identity seriously, or they may model vague predication using machin-
ery other than fuzzy sets: most of what I say should still be relevant to such
readers.

Some terminology: [0, 1] is the closed real unit interval, comprising all
the real numbers between 0 and 1 inclusive: that is, all real numbers x with
0 ≤ x ≤ 1. (0, 1] is the set of all real numbers x with 0 < x ≤ 1, and [0, 1)
is the set of all real numbers x with 0 ≤ x < 1. A fuzzy subset S of some
background set M is a function from M to [0, 1]; the number assigned to

6The teletransporter is playing the role of disrupter. Readers who do not like the
example should substitute their favourite case from the personal identity literature of a
disruptive process where it is unclear whether the person who enters the process is the
same as the person who exits the process.
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x ∈ M represents x’s degree of membership in S. The set of all things in
M assigned a value strictly greater than 0 is called the support of S, here
denoted S∗. The set of all things in M assigned the value 1 is called the core
(or kernel) of S, here denoted S∗. Note that the support and the core of a
fuzzy set are both crisp sets.

Throughout—as already foreshadowed—we shall restrict our attention to
fuzzy sets whose support is a finite set. (Note that the background set M
need not be finite.) In the classical case, things get really interesting when
we move beyond the realm of finite sets; as we shall see, in the vague case
things are already rather interesting in the finite case.

4 Counting: The Informal Story

Suppose then that we wish to count, say, the tall men in the room. Of course
we cannot simply count them in the usual way: the familiar procedure of
intoning 1, 2, 3, . . . as we go through the members of the set—being sure not
to miss any nor to count any twice—simply ‘crashes’ if we get to an object
such that it is unclear whether or not that object is in the set. If it is in,
we count it; if it is out, we do not—but the familiar procedure assumes
everything is in or out, and hence it breaks down when we confront a set
with elements that are to some degree in and to some degree out. Of course
we can count—in the familiar way—any precise sets in the vicinity: the set
of men who are greater than 6′ in height; the set of men who are members
of the set of tall men to a degree greater than 0.5; and so on. But the issue
here is whether we can go further. Can we generalise the familiar procedure
of counting the members of a crisp set, to the case of vague sets?

I can think of only one natural, satisfactory way of extending the usual
counting procedure. In the classical procedure, we intone the counting num-
bers in turn: 1, 2, 3, . . .. We assign one number to each object that is in the
set—and no number to any object that is not in the set. Thus, the tagging
of objects with numbers is an on/off matter: objects that are in the set get
tagged with a number and those that are not in do not get tagged. The de-
gree of tagging—the strength of the glue with which the tag is affixed to the
object, so to speak—matches the degree of membership of the object tagged
in the set being counted: it is ‘full on’ or ‘full off’.

In the new context of vague sets, objects can be completely in a set (in
it to degree 1) and they can be completely out of a set (in it to degree 0),
and objects can also be in a set to any intermediate degree. Maintaining
the idea that the degree of tagging of an object should match the degree
of membership of the object tagged in the set being counted, we now tag
objects to various degrees. That is, we attach numbers to objects—but
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some are attached more firmly than others. So, the counting procedure
is this. Go through the members of the set to be counted, intoning the
counting numbers in turn: 1, 2, 3, . . .. For each object we come to, the degree
of attachment of the tag (i.e. counting number) to the object matches the
degree of membership of that object in the set being counted. We can think
of this degree of attachment as being expressed by confidence—or loudness,
or what have you—of intonation. If we come to an object that is fully in the
set, we intone the next number with full confidence; if we come to an object
that is not in the set at all, we do not intone anything (we save the next
number for the next object that is in the set to some non-zero degree); if
we come to an object that is in the set to an intermediate degree, we intone
the next counting number with a degree of hesitation—or at a volume, or
whatever—that matches the degree of membership of that object in the set
being counted.

For example, suppose that Allison, Bridget, Caroline, Diana, Eleanor,
Frances, Greta and Hazel (and no-one else) are in a room. Suppose that
their degrees of membership in the set of tall persons in the room are as
follows (where x/y denotes the degree x of membership of the person with
initial y):

1/a, 0.5/b, 0.8/c, 1/d, 0/e, 0.2/f, 0.9/g, 0.3/h

Then we might count the members of the set of tall persons in the room as
follows (where the table is to be read this way: looking at the person named
in the left column, we intone the number in the middle column with the
degree of hesitation given in the right column; or this way: to the person
named in the left column, we attach—with the degree of attachment given
in the right column—the number given in the middle column):

Allison 1 1
Bridget 2 0.5
Caroline 3 0.8
Diana 4 1

Frances 5 0.2
Greta 6 0.9
Hazel 7 0.3

Note that Eleanor does not get assigned any number—not even to a tiny
degree—because her degree of membership in the set being counted is 0.

Here’s another representation of this counting process, where this time
the strength of attachment of number to person is indicated by the density
of the type in which the number is written (with the idea being that 1 is
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written in 100% black ink, 2 in 50% greyscale, 3 in 80% greyscale, and so on
down to 7 in 30% greyscale):

Allison 1
Bridget 2
Caroline 3
Diana 4

Frances 5
Greta 6
Hazel 7

Of course, there is no reason why we should count the members of the
set in the order we just did. An equally good way of counting would be the
following:

Bridget 1 0.5
Caroline 2 0.8
Allison 3 1
Diana 4 1
Greta 5 0.9
Hazel 6 0.3

Frances 7 0.2

Bridget 1
Caroline 2
Allison 3
Diana 4
Greta 5
Hazel 6

Frances 7

As would the following:

Diana 1 1
Hazel 2 0.3

Frances 3 0.2
Bridget 4 0.5
Caroline 5 0.8

Greta 6 0.9
Allison 7 1

Diana 1
Hazel 2

Frances 3
Bridget 4
Caroline 5

Greta 6
Allison 7

And so on. Note that for each element of the set, the number assigned to
that element need not remain the same across different ways of counting the
set—but the degree to which its number (whatever number it is) is assigned
does remain the same: it corresponds to the degree of membership of that
element in the set.7

7I said that much in this paper could be applied, mutatis mutandis, both to approaches
to vagueness that do not employ fuzzy sets and to counting issues arising from vague
identity. The story that I have just told about counting vague collections extends in an
obvious way to any treatment of vagueness wherein the extension of a vague predicate can
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5 Counting: The Formal Reconstruction

In the set-theoretic reconstruction of the standard picture of counting a crisp
finite set, the counting process is represented by a bijection between the set
S being counted and a natural number—which is seen as a set of objects.
The standard ordering on this natural number (i.e. on the elements of the set
with which this number is identified) yields (via the bijection) an ordering
of the set being counted. The natural number—together with the standard
ordering of its elements—plays the role of an ordinal (denoted S̄). It also—
when considered by itself, without the ordering of its elements—plays the
role of a cardinal (denoted ¯̄S).8

We want to follow a similar line of thought in relation to vague collections.
In the previous section we told a story about counting the members of a
vaguely defined set. Our first task now is to give a more precise reconstruction
of this story in set-theoretic terms.

The process of counting the members of a fuzzy set S can be represented
by a function from S∗ to (0, 1]× ω satisfying the following conditions:9

1. the function is total

(Everything is counted.)

2. the function is one-one

(Two different things are never conflated and counted as one.)

3. each element of ¯̄S∗ appears exactly once in the image of the function10

(The image of the function, for a given set S∗, is a set of pairs; the
idea here is that if we look at all the second elements of these pairs,
each element of ¯̄S∗ appears exactly once. This captures the idea that
we go through the elements of the support of S one by one, assigning

be modelled as a function from the domain of discourse to a set of membership values—
for example, supervaluationist (or subvaluationist) treatments and treatments employing
a many-valued or gappy (or glutty) logic. For the case of vague identity, the extent to
which the next counting number is attached to the next object in the set should reflect
both the extent to which that object is a member of the set and the extent to which it is
distinct from all other objects in the set.

8The notation is Cantor’s. Each bar represents an act of abstraction: one for an ordinal,
two for a cardinal (see n.4 above).

9The symbol × represents the Cartesian product. S × T is the set of all ordered pairs
whose first element is a member of the set S and whose second element is a member of
the set T .

10Recall that ¯̄S∗ is the number of elements in the support of S—and we may think of
this number as a set.
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successive numbers to them—just as in the classical story; the only
difference, which we get to below, is that the association of each number
is now a matter of degree.)

4. for each object x in S∗, the first element of the pair to which x is
mapped by the function is the same as x’s degree of membership in S

(This captures the idea that as we count the elements of the support
of S, the degree to which we associate the next counting number with
the next object considered is the same as that object’s degree of mem-
bership in S.)

This function assigns to each x ∈ S∗ a pair of things: the second element
in the pair is a counting number (of the ordinary classical sort); the first
element represents the degree to which that counting number is attached to
x.

Let’s refer to each member of (0, 1]× ω—i.e. each pair (x, n) whose first
element x is a real in (0, 1] and whose second element n is a natural number—
as a weighted number, or more specifically a weighted version of the number
n. We can then describe the present proposal as follows: we represent the
process of counting a vague set as a function that assigns to each element of
the support of that set a weighted version of one of the numbers 1 . . . n, where
n is the number of elements in the support; furthermore, the function assigns
these numbers in such a way that a weighted version of each of the numbers
1 . . . n gets assigned to some element of the support, no two elements get
assigned a weighted version of the same number, and the weighting on n in
the weighted number assigned to a is precisely the degree of membership of
a in S.

If we look back at the tables in the previous section, we can now see them
as pictures of counting functions of the sort just described.

6 Ordering

In the classical story, the process of counting the objects in a set yields
an ordering of the set: the order in which we count the elements. In the
set-theoretic reconstruction, the counting process is represented by a bijec-
tion between the set S being counted and a natural number. This natural
number—thought of as a set—comes with a natural ordering. This ordering
then yields—via the bijection—an ordering of the set being counted.

Can we tell a similar story in the vague case? We have represented the
process of counting a vague set S as a function which assigns to each element
of the support of S a pair. The first element of the pair is a real number;
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the second is a natural number. If there is a natural way of ordering these
pairs, it will yield (via the counting function—which is total and one-one) an
ordering of S∗.

It seems to me that there are two natural orderings on the pairs. (This
is typical: where, in the classical case, there is one natural option, there are
usually multiple equally natural options when we move to the fuzzy case.)
The first ordering puts (x1, y1) < (x2, y2) iff y1 < y2. (The y’s are natural
numbers, and the most recent occurrence of < denotes the standard ordering
on the natural numbers.) The resulting ordering of S∗ is the one that simply
takes the members in the order we count them—ignoring any differences
in the degrees to which successive counting numbers are attached to these
objects. (Note that the ordering of the pairs ignores the x’s altogether.)

The second ordering puts (x1, y1) < (x2, y2) iff either x1 > x2, or x1 = x2
and y1 < y2. The resulting ordering of S∗ is the one that goes through
the members in order of degree of membership—starting with the degree 1
members, if there are any, and then working down. Where there are multiple
elements with the same degree of membership, they are ordered in the order
in which they were counted.11

Both of these options result in a crisp, linear ordering of S∗. The order
types of these orderings are simply classical ordinals—and just as in the clas-
sical (finite) case, the order in which we count the elements of a set does
not affect the resulting ordinal. No matter what order we count it in, and
no matter whether we take the first or the second option just discussed, the
ordinal associated with a fuzzy set will simply be the classical ordinal asso-
ciated with its support. In other words, there are different options regarding
the order in which we put the objects in the set—but the resulting order type
will, in the cases discussed so far, simply be ‘n objects in a row’, where n is
the number of objects in the support.

Another kind of possibility would be to look for a fuzzy ordering of S∗:
that is, a mapping from S∗ × S∗ to [0, 1] (rather than to {0, 1}, as in the
case of a crisp ordering). Presumably one would want the degree to which x
comes before y to be a function of both x’s and y’s degrees of membership
in S and the order in which they were counted—that is, a function of both
which counting numbers are assigned to objects when we count the set and
the strengths of those assignments. We shall not explore the options here
any further in this paper. Suffice it to note that orderings of this kind could
be derived from the process of counting a vague set, modelled in the way
suggested here—and our concern is to preserve the connection between the

11Of course there is also a reverse version of this ordering, where we begin with the
lowest degree members and work up.
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notions of counting and ordering, rather than to explore the options regarding
ordering in detail.

7 Cardinality

There are numerous options in the literature regarding the notion of the
cardinality of a vague set—that is, numerous proposals for how to answer
the question as to how many things there are in a vague set. Our concern
here is that the answer to the cardinality question should flow from the
output of the counting process: once we have counted a vague set, we should
have sufficient resources in hand to answer the ‘how many?’ question.

This is how things go in the classical case. In the informal version of the
story, the counting process consists in tagging each object in the set with
a number. The output of this process is a list of numbers: 1 . . . n. The
cardinality of the set is then the last of these numbers. In the set-theoretic
reconstruction, the counting process is represented by a (bijective) function
between the set S being counted and some natural number n (thought of as
a set). The output of this process—the image of the set being counted under
this function—is a set of numbers/sets 0 . . . n−1. This set of numbers—which
is itself the number n—is then the cardinality of the set being counted.

Turning to the vague case, in the informal version of the story, the count-
ing process consists in tagging each object in the set with a number—with
the strength of attachment of the tag matching the level of membership of
the object being tagged in the set being counted. The output of this pro-
cess is a list of numbers, 1 . . . n, with each number said in a softer or louder
voice—or written in a lighter or darker shade of grey. In the set-theoretic
reconstruction, the counting process is represented by a function (satisfying
certain constraints) from the support S∗ of the fuzzy set S being counted to
pairs of reals in (0, 1] and natural numbers. The output of this process—the
image of the support under this function—is a set of pairs of reals in (0, 1]
and natural numbers. The idea now is that we should be able to derive the
cardinality of S from this set of pairs—from the set of pairs that we get as
output when we count S. We should not have to return to S itself, nor draw
on any other sources of information. Just looking at the list of numbers,
written in varying shades of grey, should be enough to answer the question
as to how many objects there are in the fuzzy set.

Here is a straightforward idea. The cardinality of a crisp set S is simply
the set that gathers together the values of the counting function that we get
when we take members of S as input: 0, 1, 2, . . . , n − 1 for some n. Now
when we count a fuzzy set S, the values of the counting function that we get
when we take members of S∗ as input are pairs: (x0, 0), (x1, 1), (x2, 2), . . . ,
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(xn−1, n− 1) for some n, where the xi’s are reals in (0, 1]. Such a set of pairs
determines a fuzzy subset of n (where n is conceived as the set containing
0, . . . , n− 1): the fuzzy subset that assigns as degree of membership to each
member of n, the number with which it is paired in the list of outputs. So:
can we not take this fuzzy subset of n to be the cardinality of S?

We cannot: because if we count S again in a different order, we will (in
general) get a different fuzzy subset of (the same natural number) n. (If,
on one way of counting, 1 is assigned to a degree 0.8 member of S, then 1
will be a degree 0.8 member of the resulting fuzzy subset of n; if, on another
way of counting, 1 is assigned to a degree 0.3 member of S, then 1 will be a
degree 0.3 member of the resulting fuzzy subset of n; and so on.) Yet it is a
fundamental constraint on the notion of cardinality that simply changing the
order in which we count the elements of a set should not change the answer
we get as to how many objects there are in the set.12

At this point, rather than trying to make up new proposals regarding
the cardinality of vague collections, we shall turn to the numerous proposals
already in the literature, and ask whether these proposals fit with the account
of counting given above. We shall not consider every proposal that has been
made; rather, we shall consider some proposals that play a prominent role in
the current literature on this topic.13

7.1 Cardinalities as Natural Numbers

The first class of proposals holds that the form of the answer to the question
‘How many objects are in the set?’ should be a natural number—in the vague
case as well as the classical case. The natural proposals in this area are as
follows. The cardinality of a fuzzy set S is the (classical) cardinality of:

1. the support of S

2. the core of S

3. Sx, where Sx is the (crisp) set of all elements whose degree of mem-
bership in S is strictly greater than x, for some specified threshold
x ∈ [0, 1)

4. Sx, where Sx is the (crisp) set of all elements whose degree of mem-
bership in S is greater than or equal to x, for some specified threshold
x ∈ (0, 1]

12Recall Cantor’s second act of abstraction
13My judgements regarding prominence in the literature have been heavily influenced by

Wygralak [2003], which readers should consult for further details of—and bibliographical
references regarding—the views discussed in §§7.1–7.3.
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Obviously, cardinalities of all these sorts can readily be extracted from the
output of the process of counting S in the way presented above. To find the
cardinality in sense 1, we count up (in the classical way) all the weighted
numbers in the output of the process of counting the vague set S. To find
the cardinality in sense 2, we count up the weighted numbers whose weight
is 1—that is, the numbers written in 100% black ink. To find the cardinality
in sense 3, we count up the weighted numbers whose weight exceeds x—that
is, the numbers written at a level of greyscale darker than x%; and so on.

7.2 Cardinalities as Real Numbers

The second class of proposals holds that the form of the answer to the ques-
tion ‘How many objects are in the set?’ should be a single number—but a
nonnegative real number, not necessarily a nonnegative natural number (as
in the classical case). The most natural proposal here is that the cardinality
of S is the sum, over all x in the support of S, of the degree of membership
of x in S. This is called the sigma count of S, denoted sc(S):

sc(S) =
∑
x∈S∗

S(x)

(Here, S(x) denotes the degree of membership of x in S—i.e. the value as-
signed to x by S, when we think of S as a function from some background
set to [0, 1].) So when we are counting up the bald men, a degree 1 bald man
adds 1 to the count, a degree 0.3 bald man adds 0.3 to the count, and in
general a degree x bald man adds x to the count.14

Obviously, the sigma count of S can be extracted from the results of
counting the members of S in the way presented above. The output of the
counting process is a bunch of weighted numbers; to get the sigma count, we
simply add the weights on these numbers.

7.3 Cardinalities as Fuzzy Sets of Natural Numbers

The first class of proposals held that the form of the answer to the question
‘How many objects are in the set?’ should be a natural number—in the vague
case as well as the classical case. The second class of proposals generalised in
one direction—maintaining that the cardinality should be a single number,
but not requiring that it be a natural number. The third class of proposals

14Compare the way that universities count students for certain purposes: a full-time
student adds 1 to the count; a half-time student adds 0.5 to the count; and so on. (Thanks
to David Braddon-Mitchell for this example.)
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generalises in a different direction, holding that the cardinality of a fuzzy set
should be a fuzzy set of natural numbers, rather than a single such number.

One proposal along these lines is as follows. For each natural number
n, we ask ‘What is the highest level at which we can set the membership
threshold x, such that the number of things that are in S to a degree of at least
x is at least n?’ The answer—a real in [0, 1]—is the degree of membership of
n in the fuzzy set of natural numbers that constitutes (on this proposal) the
cardinality of S. More precisely, the cardinality of S is a fuzzy subset of the
set N = {0, 1, 2, . . .} of natural numbers—that is, a function l : N→ [0, 1]—
defined as follows. For each n ∈ N:

l(n) = sup{x ∈ (0, 1] : ¯̄Sx ≥ n}

Note that if there is no positive threshold x such that at least n things are
in S to degree x or more, then l(n) = 0.

Recall the example of the fuzzy set of tall persons described in §4, with
degrees of membership as follows (where x/y denotes the degree x of mem-
bership of person y):

1/a, 0.5/b, 0.8/c, 1/d, 0/e, 0.2/f, 0.9/g, 0.3/h

The cardinality of this fuzzy set—on the present proposal—is the following
fuzzy subset of N (where x/n denotes the degree x of membership of the
number n):

1/0, 1/1, 1/2, 0.9/3, 0.8/4, 0.5/5, 0.3/6, 0.2/7, 0/8, 0/9, 0/10, . . .

The cardinality of S in this sense is readily recoverable from the output
of the process of counting S in the way presented above. The output of the
counting process is a bunch of weighted numbers. To get the cardinality, we
write out the weights in nondecreasing order (including any repetitions)—in
the present example:

1, 1, 0.9, 0.8, 0.5, 0.3, 0.2

(Note that we do not write 0 at the end of this list, because when we count we
get a weighted number for each member of the support of S—i.e. each thing
that is a member of S to some non-zero degree.) The cardinality that we
seek is a fuzzy subset of N—a function that assigns a degree of membership
to each n ∈ N. For n = 0, the degree of membership of n is 1. For n greater
than 0, and less than or equal to the number of things in the list of weights
that we just wrote out, the degree of membership of n is simply the nth
weight in the list. For all larger n, the degree of membership of n is 0.
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The cardinality proposal that we just looked at sees the cardinality of S
as a fuzzy subset of N, where the degree of membership of n in this fuzzy
subset is a measure of the truth of the claim that there are at least n things
in S. A second proposal replaces ‘at least’ here with ‘at most’. On this
proposal, the cardinality of S is a function m : N→ [0, 1] defined as follows:

m(n) = 1− l(n+ 1)

A third proposal replaces ‘at least’ in the first proposal with ‘exactly’. On
this proposal, the cardinality of S is a function e : N → [0, 1] defined as
follows:

e(n) = min{l(n),m(n)}

As cardinality in the sense of l can be extracted from the output of the
process of counting a vague set, evidently so can cardinality in the senses of
m and e.

7.4 Cardinalities via Logical Formulas

It is well known that for any finite n and any predicate P , there are formulas
of first order logic that are true in exactly those (classical) models in which
the extension of P contains exactly n things. There are different recipes
for constructing such numerical formulas. For example—Recipe 1—we can
represent ‘There are exactly n P ’s’ as the conjunction of ‘There are at least
n P ’s’ and ‘There are at most n P ’s’, where the ‘at least’ claims are rendered
as follows:

1. ∃xPx

2. ∃x∃y(Px ∧ Py ∧ x 6= y)

3. ∃x∃y∃z(Px ∧ Py ∧ Pz ∧ x 6= y ∧ x 6= z ∧ y 6= z)

...

and the ‘at most’ claims are rendered as follows:
1. ∀x∀y((Px ∧ Py)→ x = y)

2. ∀x∀y∀z((Px ∧ Py ∧ Pz)→ (x = y ∨ x = z ∨ y = z))

3. ∀x∀y∀z∀w((Px ∧ Py ∧ Pz ∧ Pw) → (x = y ∨ x = z ∨ x = w ∨ y =
z ∨ y = w ∨ z = w))

...
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Recipe 2 is just like Recipe 1 except that the ‘at most’ claims are rendered
as follows:

1. ¬∃x∃y(Px ∧ Py ∧ x 6= y)

2. ¬∃x∃y∃z(Px ∧ Py ∧ Pz ∧ x 6= y ∧ x 6= z ∧ y 6= z)

3. ¬∃x∃y∃z∃w(Px∧Py∧Pz ∧Pw∧x 6= y∧x 6= z ∧x 6= w∧ y 6= z ∧ y 6=
w ∧ z 6= w)

...

That is, ‘There are at most n P ’s’ is the negation of ‘There are at least n+ 1
P ’s’ (as rendered above). Recipe 3 does not represent ‘There are exactly n
P ’s’ as the conjunction of ‘There are at least n P ’s’ and ‘There are at most
n P ’s’, but simply renders the ‘exactly’ claims as follows:

1. ∃x∀y(Py ↔ y = x)

2. ∃x∃y(x 6= y ∧ ∀z(Pz ↔ (z = x ∨ z = y)))

3. ∃x∃y∃z(x 6= y ∧ x 6= z ∧ y 6= z ∧ ∀w(Pw ↔ (w = x ∨w = y ∨w = z)))

...

There are further options besides these three.15

Parsons’s approach to the issue of counting in the presence of vagueness
is as follows [Parsons, 2000]. If we want to know how many P ’s there are—
where either P is a vague predicate, or indeterminacy of identity is involved,
or both—we consider each of the numerical formulas in turn and assess its
truth value. So, in our example of the fuzzy set of tall persons with degrees
of membership as follows:

1/a, 0.5/b, 0.8/c, 1/d, 0/e, 0.2/f, 0.9/g, 0.3/h

what we do is consider each numerical formula—‘There is exactly one P ’,
‘There are exactly two P ’s’, etc.—and determine its degree of truth relative
to a model in which P is assigned as extension the fuzzy set just described.16

There are two ways of interpreting what is going on here. The first
way—which I take to be the sort of thing Parsons has in mind—is that the
possible answers to the cardinality question (i.e. ‘How many tall persons
are there in the room?’) are natural numbers. But it may not be that a

15For more details on the foregoing material, see e.g. Smith [2012, §13.5].
16Parsons does not work with fuzzy sets or degrees of truth. Here and below I adapt

his ideas to the present context, in which we use fuzzy sets to model vagueness.

18



unique answer is correct and all others incorrect. Various answers—various
numerical formulas—may each have a non-zero degree of truth.17 On this
interpretation, the present approach does not yield a single object as cardinal
number of the set of tall persons: it just yields an assessment (in the form of
a degree of truth) of each possible answer. This is unsatisfactory: our goal is
to extract a cardinality from the output of the counting process—not to deny
that there is such a thing as ‘the cardinality’ of a vague set. But of course
there is a second way of developing the present idea: we take the cardinality
of a fuzzy set S to be a fuzzy subset of N: the one that assigns as degree of
membership to each n ∈ N the degree of truth of the nth numerical formula
on a model on which P has S as its extension.

Evidently, once we move beyond the classical framework, numerical for-
mulas constructed according to different recipes—which are classically equiv-
alent—need not remain equivalent. Thus, we shall get different versions of
the present story—different cardinalities for vague sets—depending on which
recipe we pick for constructing our numerical formulas, and depending on
the truth conditions that we adopt for the logical operators in the new non-
classical setting.

Our concern here is with whether the cardinality of a vague set can be
recovered from the output of the process of counting that set. So: if we
have counted a vague set S, and have to hand the output of the counting
process—a list of weighted numbers—can we reconstruct the truth values of
the numerical formulas on a model on which the predicate P has the set S as
its extension? Note that we do not have the set S itself to hand—we have only
the list of weighted numbers. But of course this list allows us to reconstruct
how many things are in the support of S, and their degrees of membership
in S—and so, given certain assumptions about how the model theory is
supposed to work in the new vague context, we can indeed reconstruct the
truth values of the numerical formulas.

But now the question arises: why should we want to go this long way
around—via the numerical formulas (and furthermore settling on a partic-
ular choice of recipe for constructing them, and a particular set of truth
conditions for the logical operators)—rather than simply extracting the de-
sired cardinality (fuzzy set of natural numbers) directly from the output of
the counting process? (For example, note that if we define the truth con-

17See for example Parsons [2000] p.135: “It follows that the question of how many
persons there are all told has no correct answer. . . . in this case it seems clear that these
are the right things to say: any answer less than two or more than three is wrong, and
either “two” or “three” is such that it is indeterminate whether it is correct” and p.136: “It
appears that in this case any answer less than one or more than three is definitely wrong,
but the answers “one”, “two”, or “three” should all have indeterminate truth-value.”
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ditions for negation and conjunction as follows—where |α| is the degree of
truth of the formula α:

|¬α| = 1− |α|

|α ∧ β| = min{|α|, |β|}

and the truth condition for the existential quantifier in terms of sup, and
if we construct our numerical formulas according to Recipe 2, then the car-
dinality that we arrive at for a given fuzzy set by going via the numerical
formulas will turn out to be the same as cardinality in sense e of §7.3.) There
is only one possible reason: we might think that this route, while lengthy,
is conceptually correct. That is, we might think that there is some special
relationship between the numerical formulas and questions of cardinality—a
connection that it is important to retain. This seems to be what Parsons
thinks. He refers to the numerical formulas as analyses of cardinality claims
and writes “These analyses are natural hypotheses about the meaning of car-
dinality claims” [Parsons, 2000, 139]. Hyde, who follows Parsons’s approach
to cardinality issues in the context of vagueness, also refers to the numerical
formulas as analyses of claims of the form ‘There are exactly n P s’ [Hyde,
2008, 171]. However, I think that this is the wrong attitude to numerical
formulas. The fact that for any finite n and any predicate P , there are for-
mulas of first order logic that are true in exactly those (classical) models
in which the extension of P contains exactly n things, is not properly seen
as a fundamental fact about what it means for there to be n P ’s. It is a
fact about the expressive power of (classical) first order logic. It is a useful
fact—but if it did not hold, that would not reflect badly on the concept of
cardinality: it would reflect badly on the logic. We would still know exactly
what it means for there to be n P ’s—it would just be something that we
could not express in a logical formula. Consider the claim ‘There are finitely
many P ’s’. It is well known that we cannot construct a formula—or even a
set of formulas—such that on every model on which that formula—or all the
formulas in that set—are true, the extension of P is a finite set. This does
not threaten our understanding of the notion of finitude. It simply means
that first order logic lacks the power to express certain claims.

Given that the numerical formulas do not have any special connection to
the concept of cardinality—they do not enshrine the very notion of cardi-
nality—there would seem to be no good reason for approaching the issue of
cardinality in the context of vagueness along the roundabout route via the
truth values of numerical formulas. Simpler, and better, it seems, to define
cardinality directly from the outputs of the counting process—for example
in the ways that cardinality in the senses of l, m and e were defined in §7.3.
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8 Conclusion

My concern in this paper has not been to add to the many existing proposals
in the literature concerning the cardinality of vague collections, but to bring
some order to the landscape—specifically, by bringing into focus the connec-
tion between the notions of counting, ordering and cardinality—a connection
that is central in the classical case. I proposed a method for counting vague
collections, and discussed the relationships between this method and various
notions of ordering for vague sets. Turning then to the notion of cardinal-
ity, we saw that not all existing views concerning how we should answer the
question as to how many things there are in a vague collection fit equally
well with my proposal about how to count the members of such a collection.
In particular, the idea that we should approach cardinality via certain for-
mulas of a logical language—which has been quite influential in the recent
philosophical literature—seems to me to be less attractive than other existing
proposals.18
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